Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(2): 1336-1346, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38183413

RESUMO

Due to cell mutation and self-adaptation, the application of clinical drugs with early epidermal growth factor receptor (EGFR)-targeted inhibitors is severely limited. To overcome this limitation, herein, the synthesis and in-depth biological evaluation of an erlotinib-platinum(II) complex as an EGFR-targeted anticancer agent is reported. The metal complex is able to self-assemble inside an aqueous solution and readily form nanostructures with strong photophysical properties. While being poorly toxic toward healthy cells and upon treatment in the dark, the compound was able to induce a cytotoxic effect in the very low micromolar range upon irradiation against EGFR overexpressing (drug resistant) human lung cancer cells as well as multicellular tumor spheroids. Mechanistic insights revealed that the compound was able to selectively degrade the EGFR using the lysosomal degradation pathway upon generation of singlet oxygen at the EGFR. We are confident that this work will open new avenues for the treatment of EGFR-overexpressing tumors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Platina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
2.
J Med Chem ; 66(7): 4840-4848, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36966514

RESUMO

Photoactive antibacterial therapy is one of the novel therapeutic methods that has great application potential and prospects for curbing bacterial infections. In this work, a photoactivated iridium complex (Ir-Cl) is synthesized for photoactive antibacterial research. Ir-Cl exhibits photoacidolysis, which can generate H+ and be converted into a photolysis product Ir-OH under blue light irradiation. At the meantime, this process is accompanied by 1O2 generation. Notably, Ir-Cl can selectively permeate S. aureus and exhibit excellent photoactive antibacterial activity. Mechanism studies show that Ir-Cl can ablate bacterial membranes and biofilms under light irradiation. Metabolomics analysis proves that Ir-Cl with light exposure mainly disturbs some amino acids' degradation (e.g., valine, leucine, isoleucine, arginine) and pyrimidine metabolism, which indirectly causes the ablation of biofilms and ultimately produces irreversible damage to S. aureus. This work provides guidance for metal complexes in antibacterial application.


Assuntos
Complexos de Coordenação , Irídio , Irídio/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Luz
3.
J Med Chem ; 65(19): 13041-13051, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36134739

RESUMO

The curative effect of sorafenib in hepatocellular carcinoma (HCC) is limited and sorafenib resistance remains a major obstacle for HCC. To overcome this obstacle, a new photoactive sorafenib-Ru(II) complex Ru-Sora has been designed. Upon irradiation (λ = 465 nm), Ru-Sora rapidly releases sorafenib and generates reactive oxygen species, which can oxidize intracellular substances such as GSH. Cellular experiments show that irradiated Ru-Sora is highly cytotoxic toward Hep-G2 cells, including sorafenib-resistant Hep-G2-SR cells. Compared to sorafenib, Ru-Sora has a significant photoactivated chemotherapeutic effect against Hep-G2-SR cancer cells and 3D Hep-G2 multicellular tumor spheroids. Furthermore, Ru-Sora inducing apoptosis and ferroptosis is proved by GSH depletion, GPX4 downregulation, and lipid peroxide accumulation. Metabolomics results suggest that Ru-Sora exerts photocytotoxicity by disrupting the purine metabolism, which is expected to inhibit tumor development. This study provides a promising strategy for enhancing chemotherapy and combating drug-resistant HCC disease.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Pró-Fármacos , Rutênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células Hep G2 , Humanos , Peróxidos Lipídicos/farmacologia , Neoplasias Hepáticas/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Purinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/farmacologia , Rutênio/uso terapêutico , Sorafenibe/farmacologia
4.
Chem Sci ; 13(34): 9921-9926, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128230

RESUMO

Sonodynamic therapy (SDT) has unique advantages in deep tumour ablation due to its deep penetration depth, showing great preclinical and clinical potential. Herein, a platinum(ii)-cyanine complex has been designed to investigate its potential as a SDT anticancer agent. It generates singlet oxygen (1O2) under ultrasound (US) irradiation or light irradiation, and exhibits US-cytotoxicity in breast cancer 4T1 cells but with negligible dark-cytotoxicity. Mechanistic investigations reveal that Pt-Cy reduces the cellular GSH and GPX4, and triggers cancer cell ferroptosis under US irradiation. The metabolomics analysis illustrates that Pt-Cy upon US treatment significantly dysregulates glutathione metabolism, and finally induces ferroptosis. In vivo studies further demonstrate that Pt-Cy inhibits tumor growth under US irradiation and its efficiency for SDT is better than that for PDT in vivo. This is the first example of platinum(ii) complexes for sonodynamic therapy. This work extends the biological applications of metal complexes from PDT to SDT.

5.
Dalton Trans ; 51(29): 10875-10879, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35796219

RESUMO

Rationally-designed glucose-appended Ir(III) photo-catalysts ([Ir(N,C)2(N,N-Glc)]+, Ir1-Ir3) show visible light-induced catalytic NAD(P)H oxidation in aqueous solution. The highly in vivo biocompatible complex, Ir3, shows lysosome and mitochondria targeting necro-apoptotic photo-cytotoxicity against various cancer cell lines and multicellular spheroids, while remaining non-toxic in the dark.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Glucose , Humanos , Irídio/farmacologia , Mitocôndrias , Neoplasias/tratamento farmacológico
6.
ACS Appl Mater Interfaces ; 13(24): 27934-27944, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101408

RESUMO

Due to conventional photodynamic therapy encountering serious problems of phototoxicity and low tissue-penetrating depth of light, other dynamic therapy-based therapeutic methods such as sonodynamic therapy (SDT) are expected to be developed. To improve the therapeutic response to SDT, more effective sonosensitizers are imperative. In this study, a novel water-soluble iridium(III)-porphyrin sonosensitizer (IrTMPPS) was synthesized and used for SDT. IrTMPPS generated ample singlet oxygen (1O2) under US irradiation and especially showed distinguished US-activatable abilities at more than 10 cm deep-tissue depths. Interestingly, under US irradiation, IrTMPPS sonocatalytically oxidized intracellular NADH, which would enhance SDT efficiency by breaking the redox balance in the tumor. Moreover, IrTMPPS displayed great sonocytotoxicity toward various cancer cells, and in vivo experiments demonstrated efficient tumor inhibition and anti-metastasis to the lungs in the presence of IrTMPPS and US irradiation. This report gives a novel idea of metal-based sonosensitizers for sonotherapy by fully taking advantage of non-invasiveness, water solubility, and deep tumor therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Porfirinas/uso terapêutico , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Irídio/química , Irídio/uso terapêutico , Irídio/toxicidade , Camundongos , NAD/química , NAD/metabolismo , Neoplasias/patologia , Oxirredução , Porfirinas/síntese química , Porfirinas/toxicidade , Radiossensibilizantes/síntese química , Radiossensibilizantes/toxicidade , Oxigênio Singlete/metabolismo , Ondas Ultrassônicas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...